Sains Malaysiana 54(9)(2025): 2243-2251
http://doi.org/10.17576/jsm-2025-5409-11
Evaluation of
Dimensional Stability and Tear Strength: A Preliminary Study on Polyvinyl
Siloxane Impression Material
(Penilaian Kestabilan Dimensi dan Kekuatan
Koyakan: Kajian Awal terhadap Bahan Impresi Polivinil Siloksana)
MOHAMAD
FIRDAUS AHMAD1, NURUL IZZAH ROSLI1, ROS ANITA OMAR2,
MUHAMMAD AIDIL ROSLAN3 & NOOR AZLIN YAHYA2,*
1Faculty of Dentistry, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
2Department of Restorative Dentistry, Faculty of Dentistry,
Universiti Malaya,
50603 Kuala Lumpur, Malaysia
3Department of Science and Technology Studies, Faculty of Science,
University Malaya,
50603 Kuala Lumpur, Malaysia
Received: 18
April 2025/Accepted: 11 July 2025
Abstract
This
study investigated the tear strength and dimensional stability of polyvinyl
siloxane (PVS) impression materials following chemical disinfection and storage
at various intervals. Aquasil Ultra+ was evaluated for dimensional stability,
with 10 specimens fabricated according to American National Standards
Institute/American Dental Association (ANSI/ADA) Specification No. 19. After
1-h immersion in disinfectant, samples were sealed and stored for 24 h, 7 days,
and 14 days. Dimensional changes were assessed using an image analyser at 20×
magnification. Tear strength was tested in 12 specimens each of Aquasil Ultra+
and Chromaclone, prepared in accordance with American Society for Testing and
Materials (ASTM) 1004 and evaluated using a universal testing machine at a
crosshead speed of 51 mm/min. Statistical analysis included repeated measures
analysis of variance and independent t-tests. The dimensional stability of
Aquasil Ultra+ remained within the ADA’s 0.5% limit across all time points (p = 0.051). Tear strength differed significantly (p = 0.002), with Aquasil
Ultra+ (7.48 ± 1.35 N/mm) outperforming Chromaclone (5.98 ± 0.70 N/mm). Both
materials exceeded the minimum acceptable tear strength after 5 min of setting.
Clinical implication: Aquasil Ultra+ offers clinicians reliable performance and
flexibility in delayed model fabrication without compromising accuracy or
material durability.
Keywords: Dental
impression; dimensional stability; disinfectant; elastomeric materials;
polyvinyl siloxane; tear strength
Abstrak
Kajian
ini menilai kekuatan koyakan dan kestabilan dimensi bahan impresi polivinil
siloksana (PVS) selepas pembasmian kuman secara kimia dan penyimpanan pada
pelbagai selang masa. Aquasil Ultra+ dinilai dari segi kestabilan dimensi
dengan 10 spesimen dihasilkan mengikut spesifikasi ANSI/ADA No. 19. Selepas
perendaman selama 1 jam dalam bahan pembasmi kuman, sampel dimeterai dan
disimpan selama 24 jam, 7 hari dan 14 hari. Perubahan dimensi dianalisis
menggunakan penganalisis imej dengan pembesaran 20×. Ujian kekuatan koyakan
dijalankan ke atas 12 spesimen masing-masing bagi Aquasil Ultra+ dan
Chromaclone yang disediakan mengikut piawaian ASTM 1004 dan diuji menggunakan
mesin ujian universal pada kelajuan rentas kepala 51 mm/min. Analisis statistik
melibatkan ANOVA ukuran berulang dan ujian-t bebas. Kestabilan dimensi Aquasil
Ultra+ kekal dalam had 0.5% yang ditetapkan oleh ADA bagi semua selang masa (p = 0.051). Kekuatan koyakan menunjukkan perbezaan ketara (p = 0.002)
dengan Aquasil Ultra+ (7.48±1.35 N/mm) mengatasi Chromaclone (5.98±0.70 N/mm).
Kedua-dua bahan melebihi ambang minimum kekuatan koyakan selepas 5 minit
pengerasan. Aquasil Ultra+ menunjukkan kestabilan dimensi dan kekuatan
mekanikal yang sangat baik walaupun selepas penyimpanan berpanjangan. Implikasi
klinikal: Aquasil Ultra+ menawarkan prestasi yang boleh dipercayai dan
kefleksibelan dalam pembuatan model tertunda tanpa menjejaskan ketepatan atau
ketahanan bahan.
Kata kunci: Bahan
elastomerik; bahan pembasmi kuman; impresi pergigian; kekuatan koyakan; kestabilan
dimensi; polivinil siloksana
REFERENCES
Abhijeet, K., Jei, J.B., Murugesan, K.
& Muthukumar, B. 2022. Evaluation of setting time, tear strength,
dimensional stability and antimicrobial property of silver and titanium
nanoparticles incorporated elastomeric impression material. Journal of Oral
Biology and Craniofacial Research 12(5): 547-551.
ASTM. 2020. Standard Test Method for
Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers.
ASTM International.
Carvalhal, C.I., Mello, J.A., Sobrinho,
L.C., Correr, A.B. & Sinhoreti, M.A. 2011. Dimensional change of
elastomeric materials after immersion in disinfectant solutions for different
times. Journal of Contemporary Dental Practice 12(4): 252-258.
Cayouette, M.J., Burgees, J.O., Jones Jr.,
R.E. & Yuan, C.H. 2003. Three-dimensional analysis of dual-arch impression
trays. Quintessence International 34(3): 189-198.
Chen, S.Y., Liang, W.M. & Chen, F.N.
2004. Factors affecting the accuracy of elastometric impression materials. Journal
of Dentistry 32(8): 603-609.
Craig, R.G., Urquiola, N.J. & Liu, C.C.
1990. Comparison of commercial elastomeric impression materials. Operative
Dentistry 15(3): 94-104.
Demajo, J.K., Cassar, V., Farrugia, C.,
Millan-Sango, D., Sammut, C., Valdramidis, V. & Camilleri, J. 2016.
Effectiveness of disinfectants on antimicrobial and physical properties of
dental impression materials. International Journal of Prosthodontics 29(1): 63-67.
Ferro, K.J., Morgano, S.M., Driscoll, C.F.,
Freilich, M.A., Guckes, A.D., Knoernschild, K.L., McGarry, T.J. & Twain, M.
2023. The Glossary of Prosthodontic Terms. 10th. ed. New York: Mosby
Company.
Franco, E.B., Cunha, L.F. & Benetti,
A.R. 2007. Effect of storage period on the accuracy of elastomeric impressions. Journal of Applied Oral Science 15(3): 195-198.
Gupta, M., George, V.T. & Balakrishnan,
D. 2020. A comparative evaluation of tear strength and tensile strength of
autoclavable and non-autoclavable vinylpolysiloxane impression material: An in
vitro study. Journal of International Oral Health 12(2): 153-157.
Hafezeqoran, A., Rahbar, M., Koodaryan, R.
& Molaei, T. 2021. Comparing the dimensional accuracy of casts obtained
from two types of silicone impression materials in different impression
techniques and frequent times of cast preparation. International
Journal of Dentistry 2021: 9977478.
Hondrum, S.O. 1994. Tear and energy
properties of three impression materials. International Journal of
Prosthodontics 7(6): 517-521.
Huettig, F., Klink, A., Kohler, A.,
Mutschler, M. & Rupp, F. 2021. Flowability, tear strength, and
hydrophilicity of current elastomers for dental impressions. Materials 14(11):
2994.
Jagger, D.C., Vowles, R.W., McNally, L.,
Davis, F. & O’Sullivan, D.J. 2007. The effect of a range of disinfectants
on the dimensional accuracy and stability of some impression materials. European
Journal of Prosthodontics and Restorative Dentistry 15(1): 23-28.
Kanehira, M., Finger, W.J. & Endo, T.
2005. Volatilization of components from and water absorption of polyether
impressions. Journal of Dentistry 34(2): 134-138.
Keyf, F. 1994. Some properties of
elastomeric impression materials used in fixed prosthodontics. Journal of
Islamic Academy of Sciences 7(1): 44-48.
Lawson, N.C., Burgess, J.O. & Litaker,
M. 2008. Tear strength of five elastomeric impression materials at two setting
times and two tearing rates. Journal of Esthetic and Restorative Dentistry 20(3): 186-193.
Martins, F., Branco, P., Reis, J., Barbero
Navarro, I. & Maurício, P. 2017. Dimensional stability of two impression
materials after a 6-month storage period. Acta Biomaterialia Odontologica
Scandinavica 3(1): 84-91.
McCabe, J.F. & Wilson, H.J. 1978.
Addition curing silicone rubber impression materials. An appraisal of their
physical properties. British Dental Journal 145(1): 17-20.
Pant, R., Juszczyk, A.S., Clark, R.K. &
Radford, D.R. 2008. Long-term dimensional stability and reproduction of surface
detail of four polyvinyl siloxane duplicating materials. Journal of
Dentistry 36(6): 456-461.
Reichel, M., Schlicht, A., Ostermeyer,
C. & Kampf, G. 2014. Efficacy of surface disinfectant cleaners
against emerging highly resistant Gram-negative bacteria. BMC
Infectious Diseases 14: 292.
Re, D., De Angelis, F., Augusti, G.,
Augusti, D., Caputi, S., D’Amario, M. & D’Arcangelo, C. 2015. Mechanical
properties of elastomeric impression materials: An in vitro comparison. International
Journal of Dentistry 2015: 428286.
Rutala, W.A. 1996. APIC guideline for
selection and use of disinfectants. 1994, 1995, and 1996 APIC Guidelines
Committee. Association for Professionals in Infection Control and Epidemiology,
Inc. American Journal of Infection Control 24(4): 313-342.
Saini, R.S., Alshadidi, A.A.F., Hassan,
S.A.B., Aldosari, L.I.N., Mosaddad, S.A. & Heboyan, A. 2024. Properties
of a novel composite elastomeric polymer vinyl polyether siloxane in comparison
to its parent materials: A systemic review and meta-analysis. BMC Oral
Health 24(1): 54.
Samra, R.K. & Bhide, S.V. 2018.
Comparative evaluation of dimensional stability of impression materials from
developing countries and developed countries after disinfection with different
immersion disinfectant systems and ultraviolet chamber. Saudi Dental Journal 30(2): 125-141.
Shen, C., Rawls, H.R. &
Esquivel-Upshaw, J.F. 2022. Phillips’ Science of Dental Materials. 13th.
ed. Amsterdam: Elsevier.
Singer, L., Bourauel, C., Habib, S.I.,
Shalaby, H.E.A. & Saniour, S.H. 2022. Tear strength and elastic recovery of
new generation hybrid elastomeric impression material: A comparative study. BMC
Research Notes 15: 224.
Sinobad, T., Obradović-Djuricić,
K., Nikolić, Z., Dodić, S., Lazić, V., Sinobad, V. &
Jesenko-Rokvić, A. 2014. The effect of disinfectants on dimensional
stability of addition and condensation silicone impressions. Vojnosanitetski
Pregled 71(3): 251-258.
Smith, B.G.N., Wright, P.S. & Brown, D.
1986. The Clinical Handling of Dental Materials. 11th. ed. Bristol: IOP
Publishing Limited.
Surapaneni, H., Pallavi Samatha, Y., Ravi
Shankar, Y. & Attili, S. 2013. Polyvinyl siloxanes in dentistry: An
overview. Trends in Biomaterials and Artificial Organs 27(3): 115-123.
Taymour, N., Hussein Abdel Kader, S.,
Aboushelib, M.N. & Gad, M.M. 2024. Comparative analysis of dimensional
changes in autoclavable polyvinyl siloxane (PVS) impressions under various
sterilization/disinfection protocols: A randomized controlled trial. Saudi
Dental Journal 36(4): 603-609.
To, K.K., Tsang, O.T., Yip, C.C., Chan,
K.H., Wu, T.C., Chan, J.M., Leung, W.S., Chik, T.S., Choi, C.Y., Kandamby,
D.H., Lung, D.C., Tam, A.R., Poon, R.W., Fung, A.Y., Hung, I.F., Cheng, V.C.,
Chan, J.F. & Yuen, K.Y. 2020. Consistent detection of 2019 novel
coronavirus in saliva. Clinical Infectious Diseases 71(15): 841-843.
Walker, M.P., Rondeau, M., Petrie, C.,
Tasca, A. & Williams, K. 2007. Surface quality and long-term dimensional
stability of current elastomeric impression materials after disinfection. Journal of Prosthodontics 16(5): 343-351.
Yilmaz, E.Ç. 2020. Effect of artificial
saliva storage time of composite materials with different filler structure
(micro/nanofiller) on the mechanical and tribological behavior. Journal of
Dental Research and Review 7(2): 37-41.
*Corresponding author; email:
nazlin@um.edu.my