Sains Malaysiana 54(9)(2025): 2243-2251

http://doi.org/10.17576/jsm-2025-5409-11

 

Evaluation of Dimensional Stability and Tear Strength: A Preliminary Study on Polyvinyl Siloxane Impression Material

(Penilaian Kestabilan Dimensi dan Kekuatan Koyakan: Kajian Awal terhadap Bahan Impresi Polivinil Siloksana)

 

MOHAMAD FIRDAUS AHMAD1, NURUL IZZAH ROSLI1, ROS ANITA OMAR2, MUHAMMAD AIDIL ROSLAN3 & NOOR AZLIN YAHYA2,*

 

1Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
3Department of Science and Technology Studies, Faculty of Science, University Malaya,
50603 Kuala Lumpur, Malaysia

 

Received: 18 April 2025/Accepted: 11 July 2025

 

Abstract

This study investigated the tear strength and dimensional stability of polyvinyl siloxane (PVS) impression materials following chemical disinfection and storage at various intervals. Aquasil Ultra+ was evaluated for dimensional stability, with 10 specimens fabricated according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. After 1-h immersion in disinfectant, samples were sealed and stored for 24 h, 7 days, and 14 days. Dimensional changes were assessed using an image analyser at 20× magnification. Tear strength was tested in 12 specimens each of Aquasil Ultra+ and Chromaclone, prepared in accordance with American Society for Testing and Materials (ASTM) 1004 and evaluated using a universal testing machine at a crosshead speed of 51 mm/min. Statistical analysis included repeated measures analysis of variance and independent t-tests. The dimensional stability of Aquasil Ultra+ remained within the ADA’s 0.5% limit across all time points (p = 0.051). Tear strength differed significantly (p = 0.002), with Aquasil Ultra+ (7.48 ± 1.35 N/mm) outperforming Chromaclone (5.98 ± 0.70 N/mm). Both materials exceeded the minimum acceptable tear strength after 5 min of setting. Clinical implication: Aquasil Ultra+ offers clinicians reliable performance and flexibility in delayed model fabrication without compromising accuracy or material durability.

 

Keywords: Dental impression; dimensional stability; disinfectant; elastomeric materials; polyvinyl siloxane; tear strength

Abstrak

Kajian ini menilai kekuatan koyakan dan kestabilan dimensi bahan impresi polivinil siloksana (PVS) selepas pembasmian kuman secara kimia dan penyimpanan pada pelbagai selang masa. Aquasil Ultra+ dinilai dari segi kestabilan dimensi dengan 10 spesimen dihasilkan mengikut spesifikasi ANSI/ADA No. 19. Selepas perendaman selama 1 jam dalam bahan pembasmi kuman, sampel dimeterai dan disimpan selama 24 jam, 7 hari dan 14 hari. Perubahan dimensi dianalisis menggunakan penganalisis imej dengan pembesaran 20×. Ujian kekuatan koyakan dijalankan ke atas 12 spesimen masing-masing bagi Aquasil Ultra+ dan Chromaclone yang disediakan mengikut piawaian ASTM 1004 dan diuji menggunakan mesin ujian universal pada kelajuan rentas kepala 51 mm/min. Analisis statistik melibatkan ANOVA ukuran berulang dan ujian-t bebas. Kestabilan dimensi Aquasil Ultra+ kekal dalam had 0.5% yang ditetapkan oleh ADA bagi semua selang masa (p = 0.051). Kekuatan koyakan menunjukkan perbezaan ketara (p = 0.002) dengan Aquasil Ultra+ (7.48±1.35 N/mm) mengatasi Chromaclone (5.98±0.70 N/mm). Kedua-dua bahan melebihi ambang minimum kekuatan koyakan selepas 5 minit pengerasan. Aquasil Ultra+ menunjukkan kestabilan dimensi dan kekuatan mekanikal yang sangat baik walaupun selepas penyimpanan berpanjangan. Implikasi klinikal: Aquasil Ultra+ menawarkan prestasi yang boleh dipercayai dan kefleksibelan dalam pembuatan model tertunda tanpa menjejaskan ketepatan atau ketahanan bahan.

 

Kata kunci: Bahan elastomerik; bahan pembasmi kuman; impresi pergigian; kekuatan koyakan; kestabilan dimensi; polivinil siloksana

 

REFERENCES

Abhijeet, K., Jei, J.B., Murugesan, K. & Muthukumar, B. 2022. Evaluation of setting time, tear strength, dimensional stability and antimicrobial property of silver and titanium nanoparticles incorporated elastomeric impression material. Journal of Oral Biology and Craniofacial Research 12(5): 547-551.

ASTM. 2020. Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers. ASTM International.

Carvalhal, C.I., Mello, J.A., Sobrinho, L.C., Correr, A.B. & Sinhoreti, M.A. 2011. Dimensional change of elastomeric materials after immersion in disinfectant solutions for different times. Journal of Contemporary Dental Practice 12(4): 252-258.

Cayouette, M.J., Burgees, J.O., Jones Jr., R.E. & Yuan, C.H. 2003. Three-dimensional analysis of dual-arch impression trays. Quintessence International 34(3): 189-198.

Chen, S.Y., Liang, W.M. & Chen, F.N. 2004. Factors affecting the accuracy of elastometric impression materials. Journal of Dentistry 32(8): 603-609.

Craig, R.G., Urquiola, N.J. & Liu, C.C. 1990. Comparison of commercial elastomeric impression materials. Operative Dentistry 15(3): 94-104.

Demajo, J.K., Cassar, V., Farrugia, C., Millan-Sango, D., Sammut, C., Valdramidis, V. & Camilleri, J. 2016. Effectiveness of disinfectants on antimicrobial and physical properties of dental impression materials. International Journal of Prosthodontics 29(1): 63-67.

Ferro, K.J., Morgano, S.M., Driscoll, C.F., Freilich, M.A., Guckes, A.D., Knoernschild, K.L., McGarry, T.J. & Twain, M. 2023. The Glossary of Prosthodontic Terms. 10th. ed. New York: Mosby Company.

Franco, E.B., Cunha, L.F. & Benetti, A.R. 2007. Effect of storage period on the accuracy of elastomeric impressions. Journal of Applied Oral Science 15(3): 195-198.

Gupta, M., George, V.T. & Balakrishnan, D. 2020. A comparative evaluation of tear strength and tensile strength of autoclavable and non-autoclavable vinylpolysiloxane impression material: An in vitro study. Journal of International Oral Health 12(2): 153-157.

Hafezeqoran, A., Rahbar, M., Koodaryan, R. & Molaei, T. 2021. Comparing the dimensional accuracy of casts obtained from two types of silicone impression materials in different impression techniques and frequent times of cast preparation. International Journal of Dentistry 2021: 9977478.

Hondrum, S.O. 1994. Tear and energy properties of three impression materials. International Journal of Prosthodontics 7(6): 517-521.

Huettig, F., Klink, A., Kohler, A., Mutschler, M. & Rupp, F. 2021. Flowability, tear strength, and hydrophilicity of current elastomers for dental impressions. Materials 14(11): 2994.

Jagger, D.C., Vowles, R.W., McNally, L., Davis, F. & O’Sullivan, D.J. 2007. The effect of a range of disinfectants on the dimensional accuracy and stability of some impression materials. European Journal of Prosthodontics and Restorative Dentistry 15(1): 23-28.

Kanehira, M., Finger, W.J. & Endo, T. 2005. Volatilization of components from and water absorption of polyether impressions. Journal of Dentistry 34(2): 134-138.

Keyf, F. 1994. Some properties of elastomeric impression materials used in fixed prosthodontics. Journal of Islamic Academy of Sciences 7(1): 44-48.

Lawson, N.C., Burgess, J.O. & Litaker, M. 2008. Tear strength of five elastomeric impression materials at two setting times and two tearing rates. Journal of Esthetic and Restorative Dentistry 20(3): 186-193.

Martins, F., Branco, P., Reis, J., Barbero Navarro, I. & Maurício, P. 2017. Dimensional stability of two impression materials after a 6-month storage period. Acta Biomaterialia Odontologica Scandinavica 3(1): 84-91.

McCabe, J.F. & Wilson, H.J. 1978. Addition curing silicone rubber impression materials. An appraisal of their physical properties. British Dental Journal 145(1): 17-20.

Pant, R., Juszczyk, A.S., Clark, R.K. & Radford, D.R. 2008. Long-term dimensional stability and reproduction of surface detail of four polyvinyl siloxane duplicating materials. Journal of Dentistry 36(6): 456-461.

Reichel, M., Schlicht, A., Ostermeyer, C. & Kampf, G. 2014. Efficacy of surface disinfectant cleaners against emerging highly resistant Gram-negative bacteria. BMC Infectious Diseases 14: 292.

Re, D., De Angelis, F., Augusti, G., Augusti, D., Caputi, S., D’Amario, M. & D’Arcangelo, C. 2015. Mechanical properties of elastomeric impression materials: An in vitro comparison. International Journal of Dentistry 2015: 428286.

Rutala, W.A. 1996. APIC guideline for selection and use of disinfectants. 1994, 1995, and 1996 APIC Guidelines Committee. Association for Professionals in Infection Control and Epidemiology, Inc. American Journal of Infection Control 24(4): 313-342.

Saini, R.S., Alshadidi, A.A.F., Hassan, S.A.B., Aldosari, L.I.N., Mosaddad, S.A. & Heboyan, A. 2024. Properties of a novel composite elastomeric polymer vinyl polyether siloxane in comparison to its parent materials: A systemic review and meta-analysis. BMC Oral Health 24(1): 54.

Samra, R.K. & Bhide, S.V. 2018. Comparative evaluation of dimensional stability of impression materials from developing countries and developed countries after disinfection with different immersion disinfectant systems and ultraviolet chamber. Saudi Dental Journal 30(2): 125-141.

Shen, C., Rawls, H.R. & Esquivel-Upshaw, J.F. 2022. Phillips’ Science of Dental Materials. 13th. ed. Amsterdam: Elsevier.

Singer, L., Bourauel, C., Habib, S.I., Shalaby, H.E.A. & Saniour, S.H. 2022. Tear strength and elastic recovery of new generation hybrid elastomeric impression material: A comparative study. BMC Research Notes 15: 224.

Sinobad, T., Obradović-Djuricić, K., Nikolić, Z., Dodić, S., Lazić, V., Sinobad, V. & Jesenko-Rokvić, A. 2014. The effect of disinfectants on dimensional stability of addition and condensation silicone impressions. Vojnosanitetski Pregled 71(3): 251-258.

Smith, B.G.N., Wright, P.S. & Brown, D. 1986. The Clinical Handling of Dental Materials. 11th. ed. Bristol: IOP Publishing Limited.

Surapaneni, H., Pallavi Samatha, Y., Ravi Shankar, Y. & Attili, S. 2013. Polyvinyl siloxanes in dentistry: An overview. Trends in Biomaterials and Artificial Organs 27(3): 115-123.

Taymour, N., Hussein Abdel Kader, S., Aboushelib, M.N. & Gad, M.M. 2024. Comparative analysis of dimensional changes in autoclavable polyvinyl siloxane (PVS) impressions under various sterilization/disinfection protocols: A randomized controlled trial. Saudi Dental Journal 36(4): 603-609.

To, K.K., Tsang, O.T., Yip, C.C., Chan, K.H., Wu, T.C., Chan, J.M., Leung, W.S., Chik, T.S., Choi, C.Y., Kandamby, D.H., Lung, D.C., Tam, A.R., Poon, R.W., Fung, A.Y., Hung, I.F., Cheng, V.C., Chan, J.F. & Yuen, K.Y. 2020. Consistent detection of 2019 novel coronavirus in saliva. Clinical Infectious Diseases 71(15): 841-843.

Walker, M.P., Rondeau, M., Petrie, C., Tasca, A. & Williams, K. 2007. Surface quality and long-term dimensional stability of current elastomeric impression materials after disinfection. Journal of Prosthodontics 16(5): 343-351.

Yilmaz, E.Ç. 2020. Effect of artificial saliva storage time of composite materials with different filler structure (micro/nanofiller) on the mechanical and tribological behavior. Journal of Dental Research and Review 7(2): 37-41.

 

*Corresponding author; email: nazlin@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next